Ferric Citrate Binds Phosphorus, Delivers Iron, and Reduces IV Iron and ESA Use in ESRD

Julia B. Lewis, MD,1 Mark Koury, MD,2 Gerald Schulman, MD,1 Mohammed Sika, PhD,1 Mark T. Smith, MD,2 Frederick C. Whittler, MD,2 Douglas R. Lintfer, MD,4 Claude M. Galpin, MD, Peale Chuang, MD,2 and Jamie P. Deyer, MD,1 for the Collaborative Study Group

1Vanderbilt University Nashville, TN; 2Kidney Care Associates, Augusta, GA; 3Clinical Research Ltd, Canton, OH; 4Nephrology Associates, Nashville, TN; 5Southeast Renal Research Institute, Chattanooga, TN; 6Metabolism Nephrology Associates, Charlotte, NC

Phosphorus is ubiquitous in food and is excreted by the kidney. Phosphate control is a universal problem in well-rounded dialysis patients. Hyperphosphatemia associates with mortality rates, bone disease, hyperparathyroidism, anemia, calciuria, intractable edema, and increased risk of cardiovascular disease. New oral treatments are needed to control serum phosphorus levels, and the limitations of other phosphate binders are apparent in limiting phosphorus in the gastrointestinal (GI) tract and prevent its absorption, but all have admitted limitations.

Methods

The purpose of this randomized controlled clinical trial was to determine the efficacy and safety of ferric citrate as a phosphate binder. In addition we studied the intrapatient-supplementation effects of this oral agent.

The trial was a Phase 3, multicenter, randomized, open-label trial (NC1T3119250), conducted at 60 sites across the United States and Israel. Members (JBL, JBC, JD) of the Collaborative Study Group (CSG) designed the trial and wrote the study protocol in collaboration with the sponsor Key Pharmaceuticals, Inc. The U.S. Food and Drug Administration (FDA) reviewed and approved the protocol. The study was conducted pursuant to a Collaborative Study Group Protocol (CSG Protocol). An independent CSG statistician had full access to the final trial clinical database.

The trial was a three-month, international, multicenter, randomized controlled trial. It was divided into a 2-week Washout Period, a 52-week randomized, open-label active-control Safety Period, followed by a 4-week, randomized, open-label, pseudo-controlled Efficacy Period. Eligible subjects entering the Washout Period had at least one phosphorus level of ≥5.5 mg/dL, after a maximum of 2 weeks. Subjects were randomized in a 1:1 ratio to ferric citrate to active control for the Safety Period. Active-control drugs (calcium acetate 667 mg capsules and sodium citrate 600 mg tablets) were manufactured by Vanda Pharmaceuticals, Inc. Phosphate binders were controlled in the Safety Period by maximizing absorption, investigating, guided by the package inserts, and could be used as food (or in combination. Ferric citrate was supplied as 1 g capsule containing 250 mg of ferric citrate. Close agreements of ferric citrate were determined by a controlled-study diaphragnal compliance. Compliance was assessed by pill counts. Subjects were considered Treatment Failures if they were 85% compliant with 12 days of oral ferric citrate to active control, and had two consecutive visits with a serum phosphorus ≥5.5 mg/dL. During the Efficacy Period, those subjects randomized to active control in the Safety Period were re-randomized 1:1 to either continue ferric citrate or receive active control treatment. Treatment compliance assessment was performed using pill counts and the secondary outcome of phosphorus control was defined as a serum phosphorus level of ≤5.5 mg/dL at the end of the specified treatment period. The Primary Efficacy Outcome was the effect of ferric citrate vs. placebo on the change in serum phosphorus from efficacy study-load (week 52) to the end of the Efficacy Period (week 58). Exploratory Secondary Endpoints included iron/mineral parameters, specifically, ferritin, TSAT, use of IV iron, and use of ESA. Exploratory endpoints included serum bicarbonate and the proportion of subjects achieving goal serum phosphorus levels (defined as ≤5.5 mg/dL).

Conclusions

1. Ferric citrate controlled serum phosphorus comparable to placebo.
2. The control of serum phosphorus by ferric citrate is similar to that of active control.
3. Approximately 60% of the subjects on ferric citrate and active control achieved a well controlled phosphorus at any given time point.
4. The use of ESA ferric citrate resulted in increased iron stores, as evidenced by increased serum ferritin levels.
5. The use of ferric citrate resulted in decreased IV iron administration.
6. The use of ferric citrate resulted in decreased utilization of ESA.
7. Ferric citrate has acceptable safety compared to active control.